An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks
نویسندگان
چکیده
We introduce a new optimization strategy to compute numerical approximations of minimizers for optimal control problems governed by scalar conservation laws in the presence of shocks. We focus on the 1 − d inviscid Burgers equation. We first prove the existence of minimizers and, by a Γ-convergence argument, the convergence of discrete minima obtained by means of numerical approximation schemes satisfying the so called one-sided Lipschitz condition (OSLC). Then we address the problem of developing efficient descent algorithms. We first consider and compare the existing two possible approaches. The first one, the so-called discrete approach, based on a direct computation of gradients in the discrete problem and the so-called continuous one, where the discrete descent direction is obtained as a discrete copy of the continuous one. When optimal solutions have shock discontinuities, both approaches produce highly oscillating minimizing sequences and the effective descent rate is very weak. As a remedy we propose a new method that uses the recent developments of generalized tangent vectors and the linearization around discontinuous solutions. We develop a new descent stratagey, that we shall call alternating descent method, distinguishing descent directions that move the shock and those that perturb the profile of the solution away of it. As we shall see, a suitable alternating combination of these two classes of descent directions allows building very efficient and fast descent algorithms.
منابع مشابه
Optimal Control and Vanishing Viscosity for the Burgers Equation
We revisit an optimization strategy recently introduced by the authors to compute numerical approximations of minimizers for optimal control problems governed by scalar conservation laws in the presence of shocks. We focus on the one-dimensional (1-D) Burgers equation. This new descent strategy, called the alternating descent method, in the inviscid case, distinguishes and alternates descent di...
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملReproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation
In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.
متن کاملAn approximation to the solution of Benjamin-Bona-Mahony-Burgers equation
In this paper, numerical solution of the Benjamin-Bona-Mahony-Burgers (BBMB) equation is obtained by using the mesh-free method based on the collocation method with radial basis functions (RBFs). Stability analysis of the method is discussed. The method is applied to several examples and accuracy of the method is tested in terms of $L_2$ and $L_infty$ error norms.
متن کاملNumerical Aspects of Large-time Optimal Control of Burgers Equation
In this paper, we discuss the efficiency of various numerical methods for the inverse design of the Burgers equation, both in the viscous and in the inviscid case, in long time-horizons. Roughly, the problem consists in, given a final desired target, to identify the initial datum that leads to it along the Burgers dynamics. This constitutes an ill-posed backward problem. We highlight the import...
متن کامل